Altyn Club - Сетевой Альтруизм. Кв антенны Вертикальная антенна на 40 метров


Из-за резкого сокращения мест расположения приемных аппаратов и быстрого роста телекоммуникаций в последнее время все чаще стали использовать вертикальные кв антенны. Они представляют собой устройство, которое будет передавать или принимать сигнал в пределах коротких волн. Для монтажа не нужно много пространства, она компактная по размеру. Обладает такими достоинствами:

  • Проста в изготовлении и настройке.
  • Достаточно высокая мощность, что делает вертикальные антенны кв диапазона широко применяемыми.
  • Надежная зашита от любых погодных условий.
  • Во время работы обеспечивает качественный сигнал в эфире.

Купить такой аппарат можно на нашем сайте. Выбор достаточно велик, так что потребитель может выбрать антенну на любой вкус и в любой ценовой категории.

Вертикальные кв антенны радиолюбителей

Такие агрегаты принимают волны диапазона от 10 до 100 метров, то есть от 3 до 30 МГц. На радиостанциях зачастую используется гражданский диапазон си би. Распространение коротких волн доступно на большие расстояния. И с помощью высококачественной техники их можно фиксировать и передавать в общее пользование. На сайте представлены варианты с разными техническими характеристиками, но из высококачественных материалов.
Купить вертикальные антенны КВ Вы можете недорого у нас в интернет–магазине. Средняя стоимость невысокая. Более детально ознакомиться с прайсом можно на интернет-портале. На сайте РадиоЭксперт есть возможность заказать доставку. Продажа производится по всем регионам России и странам СНГ.

Катушка жестко закреплена на нижнем колене 7-и метрового стекло-пластикового удилища при помощи каркаса-распорки. Катушка намотана медной трубкой диаметром 3мм. Трубку эту применяют для ремонта холодильной техники (называют эту трубку капиляркой). Части каркаса (4 шт) вырезаны из текстолита толщиной 8мм. Отверстия для витков сверлятся сверлом 4мм с шагом 6мм и зенкуются. У каркаса имеются 3 ножки, в которых круглым напильником делаются продольные канавки, для лучшей фиксации на удочке.

Размер каркаса (а точнее расстояние от «ножек» до отверстий) определяются исходя из диаметра имеющегося удилища. Дело тут вот в чем: сама катушка мотается на каркасе в виде водопроводной трубы D=50мм. После намотки катушка немного «распружинивается и увеличивается в диаметре. У меня получилось после сборки расстояние между осями диаметрально противоположных отверстий 58мм.

Дальнейшая сборка проводится в следующем порядке: Катушку вкручивают в части каркаса. после того как катушка вкручена, все части каркаса располагают с одной стороны катушки и в таком виде надвигают на удилище. Теперь части каркаса распределяют равномерно по окружности катушки. Каркас держится на удилище с приличным трением. Для верности он дополнительно был приклеен клеем ВК-9 к удочке. Верхние и нижние отверстия в каркасе оставляем свободными от витков катушки, туда будут крепится полотно антенны и радиалы.

Полотно антенны: четыре провода МГТФ-0.35 длинной 5.9м закрепленных в верхних отверстиях каркаса и спаянных между собой. В этом месте так-же припаян провод с «крокодилом». Радиалы, по 3 шт (для диапазонов 20-30-40м) закрепляются в нижних отверстиях каркаса и распаиваются на нижний виток катушки. К нему-же припаяна пластинка и стеклотекстолита на которой установлен разъем питания и укорачивающий конденсатор диапазона 20м. К центральному контакту разъема припаян один вывод конденсатора и провод со вторым «крокодилом». Ко второму выводу конденсатора подключается крокодил от полотна антенны во время работы на 20м. Параллельно конденсатору КСО емкостью 82пФ на напряжение 250В подключен кусок кабеля РК50-2-11 длиной 30см (откусывается в процессе настройки). Во время работы на 30 и 40м «крокодилом» от полотна антенны находят виток катушки при котором наблюдается резонанс системы. «крокодилом» от разъема питания подбирают виток при котором наблюдается наименьший КСВ.

Зашел сегодня в магазин Реал. На вывеске о распродаже увидел «Набор шампуров 4 шт» за 9 руб 90 коп. Когда увидел этот «набор» вблизи, сразу появилась мысль использовать эти «шампуры» в качестве колышков для фиксации радиалов системы заземления под вертикалами. Эти шампуры имеют длину 370мм и диаметр 3мм. Изготовлены из стальной проволоки, покрыты хромом. Гнуться достаточно плохо. Сам не удержался и купил 20 таких наборов. При следующем выезде на природу проверим в работе 🙂

Еще один вариант изготовления походной антенны:

Это антенна ZL3XDJ. Если вы живёте на краю света, то к вам сигналы радиолюбителей приходят всегда с одной стороны. Посчитал антенну. У меня получились чуть другие параметры. Почему так? Во первых, если посмотреть на характеристики антенны (диагр. направ.) e автора? то сразу можно сказать что антенна не в резонансе. Посмотрите на четвертый параметр Z: 85.182 +j91.508 Ohm Величина +j91.508 - это реактивная часть входного сопротивления антенны. Кода антенна в резонансе то параметр "j" должен быть равным нулю, а он у нас +91,508 по этой цифре можно сказать что антенна находится за пределами 7,05 мГц. где то 7,9-8,0 мГц. ну естественно и SWR 4.0 (пятый параметр) при волновом сопротивлении антенны Z 85.182 Ом.

Во вторых, меня сильно смущало усиление антенны указанное у автора Ga 6.74 dBi (по отношению к изотропному излучателю). Я нигде не встречал вертикал с таким высоким усилением да еще без противовесов. После просмотра фотографий ZL3XDJ на www.qrz.com/ пришел к выводу что антенна рассчитывалась на жидкой поверхности, а не твердой, т. к. он живет на берегу океана, а значит вода соленая и характеристики земли будут намного выше. Нереально получить усиление антенны 6,74 dBi на качестве земли (среднее) без противовесов. Ну а теперь о расчетах.
Честно признаюсь не хотелось поднимать кучу литературы и тратить на это не один час, а то и день для изучения всех тонкостей GP с директорами, рефлекторами и т.д. и т.п. Распечатал рисунок Brian-а ZL3XDJ и вогнал в масштаб т.е. в 1 см. получилось 990 мм. у него на первом рисунке где нарисована антенна в программе, первый провод обозначен как штырь и высота Length составляет 9,2м. Набросал в MMANA v.1.2.0.20 проводники, вогнал в резонанс, посчитал на нашей Українській земле, а потом на океанических водах Австралии:-) и вот что получилось.
Высота вертикального штыря 9,685м., длинна наклонного луча (рефлектора) при углу в зените 45,2 градуса получилась 13,251 м. и часть загнутого рефлектора равна 6,7м. Нижняя часть рефлектора высоты от поверхности земли (воды) 0,16м. Расстояние между питанием антенны и рефлектором (нижний конец) равен 3,2м. Расстояние верхнего конца штыря и рефлектора равна 0,53м. Все проводники антенны имеют диаметр 1,6мм. медь. Прилагаю файл модели антенны 7050_reflector.maa и характеристики антенны.

Файлы 1.jpg и 2.jpg на них видно усиление антенны Ga(dBi) 7.48 - расчет проводился на поверхности "морская вода" при проводимости 5000mS/m и диэлектрической проницаемости 81 є. ну и соответственно макс. угол излучения равна Elev (гр).10,0 градусов.


Рисунки 3.jpg и 4.jpg показывают нам что расчет проводился на сельской местности, холмы средней высоты, тяжелые глинистые почвы при проводимости 5mS/m и диэлектрической проницаемости 13 є (качество земли среднее). соответственно имеем: усиление Ga(dBi) 2.87 и максимальный угол излучения Elev (гр). 31,0 градус.


Из всего что посчитано хочу сделать вывод. У нас нет такой поверхности воды как у ZL3XDJ, и получить усиление антенны можно если применить много противовесов лежащие на земле, разве что на берегу реки можно приблизится к заданным параметрам. Имея то что имеем и применив к вертикальному штырю рефлектор мы явно получим усиление 2,86dBi, а это почти один бал. По этому у кого нет места для противовесом можно смело устанавливать рефлектор, 13,251м. не так уж и много места и можно смело проводить связи. Ну а что касается подавление заднего лепестка то здесь оно неплохое около -9,7dBi это на нашей почве, а на воде или берегу около -15,3dBi. По этому антенна вертикальный штырь с рефлектором намного лучше чем сам вертикал ну и плюс направление." UY2RA Егор:
Понятно, что мы затевали это не собираясь остановиться на анализе увиденного. Мой опыт подсказывает, что если добавить второй рефлектор и один директор (что очень привлекательно с точки зрения конструкции - сразу получаем растяжки верхней точки, т.е. механический выигрыш), то можно получить куда более серьёзные значения усиления вперёд, ради чего, собственно и огород городиться. А если добавить систему хотя бы из трёх противовесов и приподнять основание штыря хотя бы на полтора метра над землёй, то удасться немного "прижать" диаграмму излучения к земле. Ясный перец, что это годится не всем, но для тех, у кого есть приоритетные направления на этом диапазоне, или наоборот, одна сторона закрыта наглухо, например ЖБ высотками, идея получить выигрыш в другом направлении весьма привлекательная. Поэтому Часть 2
Хорошо, что народ помогает. Вот получил письмо с поддержкой нашего плана рассказа в три этапа по направленному GP от UT3XA

"Доброго дня, Єгор! Пише Андрій UT3XA. Хочу подякувати за Ваш блог! Читаю щодня. А тепер по темі GP yagi. Ось модель, яку розробив Юра UT7XX і поділився зі мною. Цієї зими не встиг її зробити. Але хочу спробувати."

Поскольку мы с Серёжей UR5RMD планируем "разобрать по косточкам" модификации этой (далеко не новой) идеи, то чужой опыт как нельзя кстати. Сегодня добавляем в антенну директор. Тоесть получим трехэлементный GP:-) Проверили, хотя, наверное, больше для того чтобы получить картинки диаграммы:-) Вот что вышло. Сергей UR5RMD : "Промоделировал антенну Юры UT7XX получил неплохие параметры по усилению и подавлению заднего лепестка диаграммы направленности (ДН).
Опишу по порядку: на рис. 3 видим что активное входное сопротивление антенны R=49,6 Ом, можно сказать что ровно 50 Ом, реактивное входное сопротивление антенны jX -1,78 это говорит что антенна немного не в резонансе рис. 4.jpg (7,195мГц.) с заданной частотой 7,1мГц. Ну это не проблема это можно подогнать на jX 0,0 за счет применяемого конденсатора который подсоединяется последовательно со штырем ~220пФ (+-).



Рис. 2 - КСВ 1,04 очень хороший, но вот на 7,050 КСВ-1,18 и растет до 1,55 на 7,003 мГц. рис. 5.jpg. Усиление антенны Ga 4,03dBi добавка почти 1,5 бала это неплохо как для GP. Ну и подавление F/B (отношение излучений вперед/назад) составляет 20,8dB неплохой показатель для спасения от надоедливых соседей или подавления помех. Максимальный угол излучения 27,7* рис. 2.jpg и 3D_diagram.jpg Это результат не лучший, но и неплохой, и, конечно же, зависит от многих факторов... Пожалуй на этом можно закончить кратенький обзор антенны Юры. Как по мне так неплохая антенна для НЧ диапазонов. Вид антенны на рис. 3.jpg, чертеж на быструю руку ant.jpg Что же касается питание антенны вертикала с заземленной мачтой то здесь играет очень большая роль проводимость земли ну или если есть возможность разместить хотя бы радиалы на поверхности земли то это лучше чем плохая земля. В общем каждый параметр антенны требует детального рассмотрения для того что бы понять почему КСВ на нижнем участке диапазона растет и что на это влияет. Естественно что и расстояние между вибратором (вертикалом) и директором или рефлектором тоже играют роль по усилению и подавлению заднего лепестка ДН.

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

Приятно осознавать что твой сайт читают. И не только в русскоязычных странах... :-) Уже второй раз получаю письмо с просьбой ответить как еще, имеется в виду без установки Орбитрона, обновления кеплеровских данных и т.п. заморочек, посмотреть где летит конкретный спутник, который заинтересовал. С учетом того, что мы все любители (читай дилетанты), сами мы за эту задачу не возьмемся. Просто применим два пути, которые приведут к одному и тому же результату (ресурсу) - http://www.n2yo.com/?s=37772

Первый, самый простой, заходим на сайт asmat.org, выбираем там закладку Sat Status, далее нужный спутник, затем просто смотрим включенный в страницу гаджет, который просто показывает на карте Гугля где летит выбранный спутник.

Второй, более интеллектуальный. В связи с тем, что AMSAT показывает не все спутники, заходим на сайт N2YO - www.n2yo.com - затем выбираем группу

  • Fox-1A новый спутник с ЧМ транспондером

    Андрей UR5XMM: Похоже у нас появится еще один ЧМ спутник. AMSAT анонсировала дату запуска нового спутника FOX-1A. Событие произойдет совсем скоро - 27 августа 2015 года. FOX полетит на ракете United Launch Alliance Atlas 5 с базы ВВС США Vandenberg в Калифорнии. Время запуска будет сообщено дополнительно. По словам разработчиков этот сат будет очень похожим по параметрам к очень известном в прошлом АО-51 Echo. Частоты для работы через FOX-1A:

    Uplink 435.180 FM (67 Hz tone) // Downlink 145.980 FM.

    73! Андрей UR5XMM

  • EN5R Islands Activity

    EN5R Islands Activity: UIA award













  • Прохождение на выходные

    На днях зашёл разговор о прохождении. Сегодня, перед круглым столом области, сам бог велел расскзать о том что ждёт нас на выходные. И далее до середины недели. SSN в эти дни не поднимется выше 27. Это говорит о том, что для тех у кого диполь, особых радостей не предвидится. Хотя в любом случае возможны улыбки Фортуны. И бывает на ровном месте, в абсолютно пустом эфире, громко слышно редкую станцию. В эти выходные это вполне возможно, потому что зоны хорошего прохождения сильно фрагментированы. Особенно на диапазонах 24 и 28 мгц. Поверхность евразийского континента покрыта пятнами как шкура леопарда:-) Но продолжается это недолго - примерно с 10 до 14 часов по Киеву. Куда лучше выглядят диапазоны 14-21 мгц. Фифтин открывается с 6 утра и работает до 17-18 часов, на этот час области прохождения сильно фрагментированы и находятся над африканским континентом. 18 мгц гораздо лучше, но открыывается с 4 часов утра и закрывается позже. Пик прохождения на этом диапазоне с 14 до 18 часов по Киеву. Двадцатка будет открываться еще раньше, покрывать ровным слоем всё освещённое на это время солнцем и даже Тихоокеанскую акваторию включая VK&ZL и ЮВА. На западе граница прохождения ограничена атлантическим побережьем США и Карибским бассейном. Но к 18 часам территории прохождения сузятся до зоны влияния Gray Line и к 20-ти часам превратится в рваные облачка над Атлантикой:-(

  • Супер лёгкая поворотка

    Уже давно не обсуждается то, что даже самая простая поворотная антенна лучше неповоротной. Одна проблема: поднимать надо высоко, крутить нелегко..... Но однако, в ущерб, конечно, каким-то другим свойствам, с данном случае, ветровой нагрузке и вращаещему моменту, находятся храбрецы, берущие на себя гарантийные обязательства вот по такой супер мобильной поворотке. Кто хочет рассмотреть поподробнее и поближе -
    В повседневной жизни понятие связанное больше с проблемами, чем с радостями. В нашем хобби иногда проявляются неожиданные грани, которые добавляют положительных эмоций. Вот например SDR. Моё к ним отношение уже не раз проявлялось в виде скептических нотаток и даже карикатур. Кто не читал, заходите на мой сайт чаще и читайте дольше:-) Но техника развивается и незаметно положительных аспектов набралось столько, что они стали уравновешивать моё неуверенно-хорошее отношение к SDR технологиям. Первое, что меня сильно раздражало в SDR - один орган управления: мышь. Серая. С двумя кнопками. Случайно, по просьбе соседа Жени US5UM, прилаживая к его Flex3000 двойной валкодер (Геркулес) обратил внимание что рук теперь не хватает:-) И два гетеродина можно крутить одновременно и полосу менять ползунковыми регуляторами и переключений сколько хочешь..... Одним словом мой скепсис "поплыл"........ Но, продолжая упорствовать, мой мозг абсолютно не приемлет задержку сигнала в трактах приёма и передачи:-) DX уже секунду назад закончил вызов, а мой SDR только-только закончил "прожёвывать" сигнал на приём. В это время шустрые ребята уже по два раза успели дать вызов.... Работать в телеграфе без самоконтроля грустно. Когда включаешь реальный контроль, второй или WEB приёмник - просто ужасает! Вплоть до того, что передавать нельзя.... Опоздание просто сбивает с толку...

  • Когда совсем делать нечего:-)

    Я уже писал, что пакетрадио с МКС с лёгкостью принимается даже на очень простой сетап: иногда даже на Baofeng с резинкой. Совсем хорошо на что-нибудь типа автомобильной или колинеарной антенны. И уж просто оглушительно на что нибудь более 5-ти элементов. Причём не надо ничего такого городить - достаточно ходиболтайки и компьютера. Ну, вру, еще пары шнурков чтобы заставить в нужное время ручное радио переходить на приём:-) Одним словом почти без затрат можно приобщиться к радиолюбительской спутниковой тематике:-) Думаю баофенгов у наших много, проводов на простую конструкцию хватит, осталось только чтобы Муза посетила - паяльник в руки взять:-) Вот как примерно может выглядеть сеанс (или наблюдение) за работой через диджипитер RS0ISS

  • Маленькая ЕН антенна на диапазон 40 метров

    Кононов Владимир (UA1ACO)
    г. Санкт-Петербург

    Все началось с того, что под руку попалась полиэтиленовая труба диаметром 110 мм и длиной 45 сантиметров. Но самое главное, что она была черного цаета. Как известно цвет трубы зависит от наполнителя. Черный цвет говорит о том, что наполнителем является сажа (т.е. углерод), а она является проводником. Как поведет себя труба в качестве основы для ЕН антенны из такого материала. Во всех рекомендациях по изготовлению ЕН антенн говориться, что использовать трубы черного цвета не рекомендуется, так как они создают большие потери. А действительно какие потери создаст такая основа?
    Я выяснил, что содержание наполнителя в полиэтилене составляет не более 3%. А для чего нужен этот наполнитель? Оказывается для того, чтобы ультрафиолет не разрушал трубу и наполнитель является как бы защитой от разрушения. Таким образом гарантированный срок службы таких труб доходит до 50 лет!
    Вот на такой трубе и решено было сделать ЕН антенну. Длина имеющейся трубы определила длину антенны. А также появлялась возможность сравнить созданную ЕН антенну с уже имеющейся, но сделанной на стандартной полипропиленовой трубе серого цвета и длиной 1 метр и диаметром 50 мм. (на этом сайте есть статья об этой антенне).

    Исходные данные изготовленной антенны такие:
    Диаметр полиэтиленовой трубы (черной) - 110 мм.
    Длина трубы 450 мм (45 см).
    Кожух для антенны не изготавливался (а надо бы).
    Длина используемой медной фольги для цилиндров - 350 мм (с учетом пайки внахлест).
    Длина цилиндров 100 мм (10 см) на трубе.
    Соотношение длина/диаметр - 0.9
    Расстояние между цилиндрами и между цилиндром и катушкой настройки - по 110 мм.
    Провод используемый для всех катушек - ПЭВ 2,0.
    Число витков катушки настройки - 16 витков.
    Отвод от 1-го витка катушки настройки
    Число витков фазирующей катушки - 2 витка.
    Число витков входной катушки (подбирается при настройке) - не использовалась.
    Фото изготовленной ЕН антенны на диапазон 7 МГц дано на Рис. 1

    Рис. 1 Маленькая антенна на диапазон 40 метров.

    Возникли проблемы с проводом, поэтому пришлось размотать старый силовой накальный трансформатор и провода ПЭВ 2,0 мм как раз хватило на изготовление катушки антенны.
    Антенна полностью повторяет конструкцию, приведенную в предыдущих статьях. Поскольку антенна не имеет кожуха, а следовательно и хомутика настройки, антенну приходится настраивать раздвиганием витков катушки настройки, это конечно более кропотливо. После изготовления антенны были замерены ее характеристики, они показаны на рисунке Рис. 2 Изначальное количество витков (по расчету) катушки настройки, составило 14 витков. Характеристика антенны представленная на рисунке Рис. 2 как раз и отражает эту ситуацию. Дело в том, что провод, смотанный с трансформатора, был не совсем прямой (на рисунке Рис. 1 это видно) и при намотке катушки, получился небольшой шаг (витки ложились не плотно друг к другу). После доматывания еще одного витка, частота сдвинулась вниз на 7,060 МГц при неизменности характеристики.

    Рис. 2 Характеристика антенны перед добавлением одного витка к катушке настройки.

    После измерения характеристик на векторном анализаторе, антенна была установлена на подоконнике первого этажа и подключена к рядом стоящему трансиверу ICOM-718 с помощью стандартного тонкого приборного кабеля 50 Ом, длиной 60 сантиметров, рисунок Рис. 3. По измерителю КСВ трансивера, была измерена реальная полоса пропускания антенны. Она оказалась довольно узкой, около 40-50 КГц (по КСВ=2). Для работы на PSK это то, что надо! Конечно в SSB участке даже при переходе с одного конца диапазона на другой требовалась подстройка. Тем не менее антенну очень легко было перестраивать, отодвиганием одного витка катушки настройки. Конечно при постоянной эксплуатации антенны, ее необходимо снабдить органом настройки (хомутик, внутренний или внешний, кожух, при установке на улице, автоматическая ситема настройки антенны и т.д.), но цель изготовления данной антенны была иной, о чем говорилось выше. Важно было проверить принципиальную возможность изготовления такой антенны и проверить ее в самых неблагоприятных условиях.

    Рис. 3 ЕН антенна на подоконнике первого этажа.
    (под антенной серая круглая подставка высотой 25 см.)

    И так, антенна стоит и подключена к трансиверу. Ну какой радиолюбитель удержится от того, чтобы выйти в эфир? Хотя, честно сказать, хорошего результата ожидать не приходилось. Ну сами посудите: длина антенны 45 сантиметров (и это для диапазона 40 метров!), высота над землей (в лучшем случае) 1,5 метра. Мощность передатчика 50 ватт (я никогда не устанавливаю максимум 100 ватт, да и страшновато как-то, антенна-то почти на трансивере!).
    Кручу ручку настройки трансивера... прохождение не очень хорошее (как сказал EW7SL - "...как будто антенна отключена, станций мало, пойду на ВЧ бэнды, может там лучше"). Очень громко слышно RW3LZ (SSB), его зовут много станций, причем, как сказал Алексей, станции проходят громко попеременно из разных районов. Зову... с третьего раза Алексей дает рапорт RS 58. Воодушевленный проведенным QSO, "шуршу" дальше по диапазону... RK3DUZ, с первого раза 59/59. Перехожу на CW. Зову LA9LE, сразу отвечает и дает рапорт RST 559. Конечно оценка не блеск, но учитывая, что и сам Том (LA9LE) проходит с QSB до 559, вполне прилично! Иду дальше по диапазону, слышу SM5OMP (CW) заканчивает связь. Брэкаю, что я на частоте... отвечает подождите, и после окончания связи сразу вызывает меня! Рапорт 599/599 причем FB добавляет. Дальше связь с RK3YYL и т.д.
    На следующий день прохождение было намного лучше, на SSB станции сидели одна на другой. Как ни странно, отвечать стали несколько хуже и оценки сигнала также ухудшились. С одной стороны это понятно QRM и мощные станции забивали мой слабый стигнал, но... отвечали! Иногда не с первого и даже не со второго раза, кто-то и вообще не слышал (при работе в группе). Были проведены связи с: SM5XHS; SM7BKZ; SM7TZF; UT5PH; DK0EPC; DK2KXA; YL2CA; OH6MM - на PSK31 а также EW8AM; UA3EMJ; RA3DQO; UA3SDE; RA3DMS; RK3EXG - на SSB и т.д. И здесь подтвердилось то, что вполне логично - высота подъема над землей. Работа антенны в 1,5 метрах от земли, это конечно плохо, но можно было сравнить с ЕН антенной, установленной на высоте 8 метров. На прием это почти не чувствовалось, но на передачу... очень сильно. Я понимаю, что RZ3ZM преспросил не зря, на какой высоте стоит антенна и какая подводится мощность: QRM, сигнал не очень сильный и не каждый работает в 1,5 метрах от земли мощностью 50 ватт на антенну 45 сантиметров длиной.
    Кстати, удалось сравнить на слух ЕН антенну на подоконнике и ЕН антенну длиной 1 метр, на этот же диапазон, установленную на крыше, на высоте 8 метров. Высота не большая (а тем более на диапазон 40 метров) и разница на прием, практически была не большой... может чуть шумов больше от антенны на подоконнике, да это и понятно.
    Ну и что, скажут, здесь особенного? Обычные связи, ничего интересного, никаких DX... Да, я согласен, все как обычно, но!!! ЕН антенна-то длиной 45 сантиметров и на высоте над землей 1,5 метра! И это все на диапазоне 40 метров! Все как обычно, только я эту антенну взял под мышку и с трансивером и антенной перешел метров на 50 в сторону и там провел еще несколько QSO!
    Хочется сделать одно важное замечание уже звучавшее в предыдущих статьях и на которое надо обращать внимание:

    Поскольку антенна маленькая, конечно появится желание расположить ее в жилом помещении. НЕ ДЕЛАЙТЕ ЭТОГО - помните о сильном влиянии электромагнитного поля! (это касается любых антенн, а тем более ЕН). Я конечно говорю не о QRP. Учитывайте влияние электромагнитного поля на организм человека!

    Вот такие ЕН "пироги" на черной трубе!

    Предлагаемая ниже модификация хорошо известной антенны позволит перекрыть весь коротковолновый радиолюбительский диапазон частот, немного проигрывая полуволновому диполю в диапазоне 160 метров (0.5дБ на ближних и около 1 дБ на дальних трассах). При точном исполнении, антенна работает сразу и в настройке не нуждается. Отмечена интересная особенность антенны: на нее не воспринимаются статические помехи, по сравнению с диапазонным полуволновым диполем прием очень комфортный. Хорошо прослушиваются слабые DX станции, особенно на НЧ диапазонах. Длительная эксплуатация антенны (почти 8 лет на момент публикации, ред.) позволила отнести ее к малошумным приемным антеннам. В остальном, на мой взгляде» по эффективности она не уступает диапазонной полуволновой антенне: диполю или Inv. Vee на каждом из диапазонов от 3.5 до 28МГц. Еще одно наблюдение, основанное на отзывах дальних корреспондентов, при передаче отсутствуют глубокие QSB. Из проделанных мной 23 вариантов модификаций антенны, приводимый здесь, заслуживает наибольшего внимания и может быть рекомендован для массового повторения. Все размеры антенно-фидерной системы рассчитаны и точно выверены практически.


    Полотно антенны

    Размеры вибратора приведены на рисунке выше. Обе половины вибратора симметричны, лишняя длина «внутреннего угла» урезается по месту, там же крепится небольшая изолированная площадка для соединения с питающей линией. Балластный резистор 2400м, пленочный (зеленого цвета), 10Вт. Можно использовать любое другое той же мощности, но обязательно безиндукцинное. Медный провод в изоляции, сечением 2.5мм. Распорки - деревянная рейка сечением 1х1см с лаковым покрытием. Расстояние между отверстиями 87см. Растяжки - капроновый шнур.

    Воздушная линия питания

    Медный провод ПВ-1, сечением 1мм, распорки из винипласта. Расстояние меаду проводниками 7.5см. Длина линии 11 метров.

    Авторский вариант установки

    Используется металлическая, заземленная снизу, мачта. Установлена на крыше 5-этажного дома. Высота мачты 8 метров, труба диаметром 50мм. Концы антенны располагаются на расстоянии 2-х метров от крыши. Сердечник согласующего трансформатора (ШПТР) вделан из «строчни ка» ТВС-90ЛЦ5. Катушки удаляются, сам сердечник склеивается «супермоментом» до монолитного состояния и проматывается 3-мя слоями лакоткани. Намотка ведется в два провода без скрутки. Трансформатор содержит 16 витков одножильного изолированного медного провода диаметром 1мм. Поскольку трансформатор имеет квадратную (или прямоугольную) форму, то на каждую из 4-х сторон наматывается по 4 пары витков - наилучший вариант распределения тока. КСВ во всем диапазоне от 1.1 до 1.4. ШПТР помещается в хорошо пропаянный с оплеткой фидера экран из жести. С внутренней стороны к нему надежно подпаивается средний вывод обмотки трансформатора.После сборки и установки антенна будет работать практически в любых условиях: располагаясь низко над землей или над крышей дома. Отмечен низкий уровень TVI (помех телевидению), что может заинтересовать сельских радиолюбителей или дачников.

    Антенны Яги с рамочным вибратором, расположенным в плоскости антенны называются LFA Yagi (Loop Feed Array Yagi) и характеризуются большим, чем у обычных Яги рабочим диапазоном частот. Одной из популярных LFA Yagi является 5-элементная конструкция Джастина Джонсона (G3KSC) на 6-метровый диапазон.

    Схема антенны, расстояния между элементами и размеры элементов, показаны ниже в таблице и на чертеже.

    Размеры элементов, расстояний до рефлектора и диаметров алюминиевых трубок, из которых выполнены элементы согласно таблицы: Элементы установлены на траверсе длиной около 4,3 м из квадратного алюминиевого профиля сечением 90?30 мм через изоляционные переходные планки. Вибратор питается по 50-омному коаксиальному кабелю через симметрирующий трансформатор1:1.

    Настройка антенны по минимальному КСВ в середине диапазона производится путем подбора положения торцевых П-образных частей вибратора из трубок диаметром 10 мм. Изменять положение этих вставок нужно симметрично, т.е., если правую вставку выдвинули на 1 см, то и левую нужно выдвинуть на столько же.

    Антенна имеет следующие характеристики: максимальное усиление 10,41 дБи на 50,150 МГц, максимальное отношение фронт/тыл 32.79 дБ, рабочий диапазон частот 50,0-50,7 МГц по уровню КСВ=1,1

    "Prakticka elektronik"

    КСВ-метр на полосковых линиях

    Широко известные из радиолюбительской литературы КСВ-метры выполнены с использованием направленных ответвителей и представляют собой однослойную катушку или ферритовый кольцевой сердечник с несколькими витками провода. Указанные устройства имеют ряд недостатков, основным из которых является то, что при измерении больших мощностей появляется высокочастотная «наводка» в измерительной цепи, требующая дополнительных затрат и усилий по экранировке детекторной части КСВ-метра для уменьшения погрешности измерений, а при формальном отношении радиолюбителя к изготовлению прибора, КСВ-метр может стать причиной изменения волнового сопротивления фидерной линии в зависимости от частоты. Предлагаемый вниманию КСВ-метр на основе полосковых направленных ответвителей лишён подобных недостатков, конструктивно выполнен в виде отдельного самостоятельного прибора и позволяет определить отношение прямой и отражённой волн в цепи антенны при подводимой мощности до 200 Вт в частотном диапазоне 1…50 МГц при волновом сопротивлении фидерной линии 50 Ом. Если требуется иметь только индикатор выходной мощности передатчика или контролировать ток антенны, можно воспользоваться таким устройством: При измерении КСВ в линиях с волновым сопротивлением отличным от 50 Ом, значения резисторов R1 и R2 следует изменить до величины волнового сопротивления измеряемой линии.

    Конструкция КСВ-метра

    КСВ-метр выполнен на плате из двустороннего фольгированного фторопласта толщиной 2 мм. В качестве замены возможно использование двусторонннего стеклотекстолита.

    Линия L2 выполнена на тыльной стороне платы и показана прерывистой линией. Её размеры 11?70 мм. В отверстия линии L2 под разъёмы XS1 и XS2 вставлены пистоны, которые развальцованы и пропаяны вместе с L2. Общая шина с обеих сторон платы имеет одинаковую конфигурацию и на схеме платы заштрихована. В углах платы просверлены отверстия, в которые вставлены отрезки провода диаметром 2 мм, пропаянные с обеих сторон общей шины. Линии L1 и L3 расположены с лицевой стороны платы и имеют размеры: прямой участок 2?20 мм, расстояние между ними 4 мм и расположены симметрично продольной оси линии L2. Смещение между ними вдоль продольной оси L2 -10 мм. Все радиоэлементы расположены со стороны полосковых линий L1 и L2 и припаяны внахлёст непосредственно к печатным проводникам платы КСВ-метра. Печатные проводники платы следует посеребрить. Собранная плата припаивается непосредственно к контактам разъёмов XS1 и XS2. Применение дополнительных соединительных проводников или коаксиального кабеля недопустимо. Готовый КСВ-метр помещают в коробку из немагнитного материала толщиной 3…4 мм. Общую шину платы КСВ-метра, корпуса прибора и разъёмов соединяют между собой электрически. Отсчет КСВ производят следующим образом: в поло- жениии S1 «Прямая» с помощью R3 устанавливают стрелку микроамперметра на максимальное значение (100 мкА) и переведя S1 в «Обратная», отсчитывают значение КСВ. При этом показанию прибора 0 мкА соответствует КСВ 1; 10 мкА - КСВ 1,22; 20 мкА - КСВ 1,5; 30 мкА - КСВ 1,85; 40 мкА - КСВ 2,33; 50 мкА - КСВ 3; 60 мкА - КСВ 4; 70 мкА - КСВ 5,67; 80 мкА - 9; 90 мкА - КСВ 19.

    Девятидиапазонная КВ антенна

    Антенна представляет собой разновидность известной многодиапазонной антенны «WINDOM», у которого точка питания смещена от центра. При этом входное сопротивление антенны в нескольких любительских KB диапазонах составляет примерно 300 Ом,
    что позволяет использовать в качестве фидера и одиночный провод, и двухпроводную линию с соответствующим волновым сопротивлением, и, наконец, коаксиальный кабель, подключаемый через согласующий трансформатор. Для того чтобы антенна работала во всех девяти любительских KB диапазонах (1.8; 3,5; 7; 10; 14; 18; 21; 24 и 28 МГц), параллельно включены по существу, две антенны «WINDOM» (см. выше рис. а): одна с общей длиной около 78 м (l/2 для диапазона 1,8 МГц), а другая с общей длиной примерно 14 м (l/2 для диапазона 10 МГц и l для диапазона 21 МГц). Оба излучателя питаются от одного коаксиального кабеля с волновым сопротивлением 50 Ом. Согласующий трансформатор имеет коэффициент трансформации сопротивления 1:6.

    Примерное расположение излучателей антенны в плане показано на рис.б.

    При установке антенны на высоте 8 м над хорошо проводящей «землей» коэффициент стоячей волны в диапазоне 1.8 МГц не превышал 1,3, в диапазонах 3,5, 14. 21, 24 и 28 МГц - 1.5, в диапазонах 7. 10 и 18 МГц - 1,2. В диапазонах 1,8, 3,5 МГц и до некоторой степени в диапазоне 7 МГц при высоте подвески 8 м диполь, как известно, излучает в основном под большими углами к горизонту. Следовательно, в этом случае антенна будет эффективна лишь при проведении ближних связей (до 1500 км).

    Схема подключения обмоток согласующего трансформатора для получения коэффициента трансформации 1:6 показана на рис.в.

    Обмотки I и II имеют одинаковое число витков (как и в обычном трансформаторе с коэффициентом трансформации 1:4). Если общее число витков этих обмоток (а оно зависит в первую очередь от размеров магнитопровода и его начальной магнитной проницаемости) равно n1, то число витков n2 от точки соединения обмоток I и II до отвода рассчитывают по формуле n2=0.82n1.т

    Горизонтальные рамки весьма популярны. Рик Роджерс (KI8GX) провел эксперименты с «наклонной рамкой», крепящейся к одной мачте.

    Для установки варианта «наклонной рамки» с периметром 41,5м, необходима мачта высотой 10…12 метров и вспомогательная опора высотой около двух метров. К этим мачтам крепятся противоположные углы рамки, которая имеет форму квадрата. Расстояние между мачтами выбирают таким, чтобы угол наклона рамки по отношению к земле был в пределах 30…45°.Точка питания рамки расположена в верхнем углу квадрата. Питается рамка коаксиальным кабелем с волновым сопротивлением 50 Ом.По измерениям KI8GX в этом варианте рамка имела КСВ=1,2 (минимум) на частоте 7200 кГц, КСВ=1,5 (довольно «тупой» минимум) на частотах выше 14100 кГц, КСВ=2,3 во всем диапазоне 21 МГц, КСВ=1,5 (минимум) на частоте 28400 кГц. На краях диапазонов значение КСВ не превышало 2,5. По данным автора некоторое увеличение длины рамки сместит минимумы ближе к телеграфным участкам и позволит получить КСВ меньше двух в пределах всех рабочих диапазонов (кроме 21 МГц).

    QST №4 2002 год

    Вертикальная антенна на 10,15 метров

    Несложную комбинированную вертикальную антенну для диапазонов 10 и 15 м можно изготовить как для работы в стационарных условиях, так и для загородных выездов. Антенна представляет собой вертикальный излучатель (рис.1) с заграждающим фильтром (трапом) и двумя резонансными противовесами. Трап настроен на выбранную частоту в диапазоне 10 м, поэтому в этом диапазоне излучателем является элемент L1 (см. рисунок). В диапазоне 15м катушка индуктивности трапа является удлиняющей и совместно с элементом L2 (см. рисунок) доводит общую длину излучателя до 1/4 длины волны на диапазоне 15 м.Элементы излучателя можно изготовить из труб (в стационарной антенне) или из провода (для походной антенны), закрепленного на фибергласовых трубах.«Траповая» антенна является менее «капризной» в настройке и эксплуатации, чем антенна, состоящая из двух расположенных рядом излучателей.Размеры антенны приведены на рис.2.Излучатель состоит из нескольких отрезков дюралюминиевых труб разного диаметра, соединенных одна с другой через переходные втулки. Питается антенна 50-омным коаксиальным кабелем. Для предотвращения протекания ВЧ тока по внешней стороне оплетки кабеля питание осуществляется через токовый балун (рис.3), выполненный на кольцевом сердечнике FT140-77.Обмотка состоит из четырех витков коаксиального кабеля RG174. Электрическая прочность этого кабеля вполне достаточна для работы с передатчиком с выходной мощностью до 150 Вт. При работе с более мощным передатчиком следует применять либо кабель с тефлоновым диэлектриком (например, RG188), либо кабель большого диаметра, для намотки которого, естественно, потребуется ферритовое кольцо соответствующего размера. Балун устанавливается в подходящей диэлектрической коробке:

    Рекомендуется между вертикальным излучателем и опорной трубой, на которой крепится антенна, следует установить безындуктивный двухваттный резистор сопротивлением 33 кОм, который будет предотвращать накопление статического заряда на антенне. Резистор удобно разместить в коробке, в которой установлен балун. Конструкция трапа может быть любой.
    Так, катушку индуктивности можно намотать на отрезке ПВХ-трубы диаметром 25 мм с толщиной стенок 2,3 мм (в эту трубу вставляются нижняя и верхняя части излучателя). Катушка содержит 7 витков медного провода диаметром 1,5 мм в лаковой изоляции, намотанного с шагом 1-2 мм. Требуемая индуктивность катушки - 1,16 мкГн. Параллельно катушке подключается высоковольтный (6 кВ) керамический конденсатор емкостью 27 пФ, и в результате получается параллельный колебательный контур на частоту 28,4 МГц. Точная настройка резонансной частоты контура проводится сжатием или растяжением витков катушки. После настройки витки фиксируются клеем, но следует иметь в виду, что излишнее количество нанесенного на катушку клея может значительно изменить ее индуктивность и привести к росту диэлектрических потерь и, соответственно, снижению КПД антенны. Кроме того, трап можно изготовить из коаксиального кабеля, намотав 5 витков на ПВХ-трубе диаметром 20 мм, но необходимо предусмотреть возможность изменения шага намотки для обеспечения точной настройки на требуемую резонансную частоту. Конструкция трапа для его расчета очень удобно воспользоваться программой Coax Trap, которую можно скачать из Интернета. Практика показывает, что такие трапы надежно работают со 100-ваттными трансиверами. Для защиты трапа от воздействия окружающей среды он помещается в пластиковую трубу, которая сверху закрывается заглушкой. Противовесы можно изготовить из неизолированного провода диаметром 1 мм, и их желательно разнести как можно дальше друг от друга. Если для противовесов применяется провод в пластиковой изоляции, то их следует несколько укоротить. Так, противовесы из медного провода диаметром 1,2 мм в виниловой изоляции толщиной 0,5 мм должны иметь длину 2,5 и 3,43 м для диапазонов 10 и 15 м соответственно. Настройку антенны начинают в диапазоне 10 м, предварительно убедившись, что трап настроен на выбранную резонансную частоту (например, 28,4 МГц). Минимума КСВ в фидере добиваются изменением длины нижней (до трапа) части излучателя. Если эта процедура окажется безуспешной, то придется в небольших пределах изменить угол, под которым противовес располагается относительно излучателя, длину противовеса и, возможно, его расположение в пространстве.Только после этого принимаются за настройку антенны в диапазоне 15 м. Изменением длины верхней (после трапа) части излучателя добиваются минимума КСВ. Если добиться приемлемого КСВ невозможно, то следует применить решения, рекомендованные для настройки антенны диапазона 10 м.В опытном образце антенны в полосе частот 28,0-29,0 и 21,0- 21,45 МГц КСВ не превышал 1,5.

    Настройка антенн и контуров с помощью генератора помех

    Для работы с данной схемой генератора помех можно использовать реле любого типа с соответствующим напряжением питания и с нор мальнозамкнутым контактом. При этом чем выше напряжение питания реле, тем выше уровень помех, создаваемых генератором. Для уменьшения уровня наводок на испытываемые устройства, необходимо тщательно заэкранировать генератор, а питание осуществлять от батареи или аккумулятора для предотвращения попадания помех в сеть. Кроме наладки помехозащищенных устройств, с таким генератором помех можно производить измерения и наладку высокочастотной аппаратуры и ее узлов.

    Определение резонансной частоты контуров и резонансной частоты антенны

    При использовании обзорного приемника с непрерывным диапазоном или волномера можно определить резонансную частоту испытываемого контура по максимальному уровню помех на выходе приемника или волномера. Для устранения влияния генератора и приемника на параметры измеряемого контура их катушки связи должны иметь минимально возможную связь с контуром При подключении генератора помех к испытуемой антенне WA1, можно аналогично с измерением контура определить ее резонансную частоту или частоты.

    И.Григоров, RK3ZK

    Широкополосная апериодическая антенна T2FD

    Постройка антенн на НЧ в связи с большими линейными размерами вызывает у радиолюбителей вполне определенные трудности, связанные с отсутствием необходимого для этих целей пространства, сложности изготовления и установки высоких мачт. Поэтому, работая на суррогатных антеннах, многие используют интересные НЧ диапазоны в основном для местных связей с усилителем «сто ватт на километр». В радиолюбительской литературе встречаются описания довольно эффективных вертикальных антенн, которые, по заявлениям авторов, «практически не занимают площади». Но стоит вспомнить, что для размещения системы противовесов (без которых вертикальная антенна малоэффективна) требуется значительное пространство. Поэтому в отношении занимаемой площади выгоднее использовать линейные антенны, особенно выполненные по типу популярной «инвертированное V», так как для их сооружения требуется всего одна мачта. Однако, превращение такой антенны в двухдиапазонную намного увеличивает занимаемую площадь, так как излучатели разных диапазонов желательно размещать в различных плоскостях. Попытки использовать переключаемые удлиняющие элементы, настроенные линии питания и прочие способы превращения отрезка провода во вседиапазонную антенну (при доступных высотах подвеса 12-20 метров) приводят чаще всего к созданию «суперсуррогатов» настраивая которые можно проводить потрясающие испытания своей нервной системы. Предлагаемая антенна не является «сверхэффективной», но позволяет нормально работать в двух-трех диапазонах без всяких переключений, отличается относительной стабильностью параметров и не нуждается в кропотливой настройке. Имея высокое входное сопротивление при небольших высотах подвеса, она обеспечивает лучший к.п.д., чем простые проволочные антенны. Это несколько видоизмененная широко известная антенна T2FD, популярная в конце 60-х годов, к сожалению, почти не применяемая в настоящее время. Очевидно, она попала в разряд «забытых» из-за поглощающего резистора, на котором рассеивается до 35% мощности передатчика. Именно боясь потерять эти проценты, многие считают T2FD несерьезной конструкцией, хотя спокойно используют на ВЧ диапазонах штырь с тремя противовесами, к.п.д. которого не всегда «дотягивает» до 30%. Пришлось услышать множество «против» в отношении предлагаемой антенны, зачастую ничем не обоснованных. Попытаюсь кратко изложить те «за», благодаря которым была выбрана T2FD для работы на НЧ диапазонах. В апериодической антенне, представляющей собой в простейшем варианте проводник с волновым сопротивлением Z, нагруженный на поглощающее сопротивление Rh=Z, падающая волна, достигнув нагрузки Rh не отражается, а полностью поглощается. Благодаря чему устанавливается режим бегущей волны, для которого характерно постоянство максимального значения тока Iмакс вдоль всего проводника. На рис. 1(A) изображено распределение тока вдоль полуволнового вибратора, а на рис. 1(B)- вдоль антенны бегущей волны (потери на излучение и в проводнике антенны условно не учтены. Заштрихованная область называется площадью тока и применяется для сравнения простых проволочных антенн. В теории антенн существует понятие эффективной (электрической) длины антенны, которая определяется замещением реального вибратора мнимым, вдоль которого ток распределяется равномерно, имея такое же значение Iмакс, что и у исследуемого вибратора (т.е. так же, как на рис. 1(B)). Длина мнимого вибратора выбирается такой, чтобы геометрическая площадь тока реального вибратора была равна геометрической площади мнимого. Для полуволнового вибратора длина мнимого вибратора, при которой площади тока равны, составляет величину равную L/3.14 [пи], где L - длина волны в метрах. Не трудно вычислить, что длина полуволнового диполя с геометрическими размерами = 42 м (диапазон 3,5 МГц) электрически равна 26 метрам, которые и являются эффективной длиной диполя. Вернувшись к рис. 1(B), легко обнаружить, что эффективная длина апериодической антенны практически равна ее геометрической длине. Проведенные эксперименты в диапазоне 3,5 МГц позволяют рекомендовать данную антенну радиолюбителям в качестве неплохого варианта «затраты-отдача». Немаловажным достоинством T2FD является широкополосность и работоспособность при «смешных» для НЧ диапазонов высотах подвеса, начиная с 12-15 метров. Например, диполь 80-метрового диапазона при такой высоте подвеса превращается в «военную» зенитную антенну,
    т.к. излучает вверх порядка 80% подведенной мощности.Основные размеры и конструкция антенны показаны на рис.2, На рис.3 - верхняя часть мачты, где установлен согласующе-симметрирующий трансформатор Т и поглощающее сопротивление R Конструкция трансформатора на рис.4 Выполнить трансформатор можно практически на любом магнитопроводе с проницаемостью 600-2000 НН. Например, сердечник от ТВС ламповых телевизоров или пара сложенных вместе колец диаметром 32-36 мм. Он содержит три обмотки, намотанные в два провода, например МГТФ-0,75 кв.мм (использовался автором). Сечение зависит от подводимой к антенне мощности. Провода обмоток уложены плотно, без шага и скруток. В месте, указанном на рис.4, провода следует скрестить. Достаточно намотать 6-12 витков в каждой обмотке. Если внимательно рассмотреть рис.4, то изготовление трансформатора не вызывает каких-либо затруднений. Сердечник следует защитить от коррозии лаком, желательно масляным или влагостойким клеем. Поглощающее сопротивление должно теоретически рассеивать 35% подводимой мощности. Экспериментально установлено, что резисторы МЛТ-2 при отсутствии постоянного тока на частотах KB диапазонов выдерживают 5-6-кратные перегрузки. При мощности 200 Вт достаточно 15-18 резисторов МЛТ-2, соединенных параллельно. Результирующее сопротивление должно находиться в пределах 360-390 Ом. С указанными на рис.2 размерами антенна работает в диапазонах 3,5-14 МГц. Для работы в диапазоне 1,8 МГц желательно увеличить общую длину антенны хотя бы до 35 метров, идеально 50-56 метров. При правильном выполнении трансформатора Т антенна в какой-либо настройке не нуждается, необходимо лишь убедиться в том, что КСВ лежит в пределах 1,2-1,5. В противном случае ошибку следует искать в трансформаторе. Следует отметить, что с популярным трансформатором 4:1 на основе длинной линии (одна обмотка в два провода) работа антенны резко ухудшается, причем КСВ может быть 1,2-1,3.

    German Quad Antenna на 80,40,20,15,10 и даже 2м

    Большинство городских радиолюбителей сталкиваются с проблемой размещения коротковолновой антенны из-за ограниченного пространства. Но если имеется место для подвеса проволочной антенны, то автор прелагает воспользоваться им и сделать "GERMAN Quad /images/book/antenna". Он сообщает, что она хорошо работает на 6-ти любительских диапазонах 80, 40, 20, 15, 10 и даже 2 метрах. Схема антенны приведена на рисунке.Для ее изготовления потребуется ровно 83 метров медного провода диаметром 2,5 мм. Антенна представляет собой квадрат со стороной 20,7 метра, который подвешивается горизонтально на высоте 30 футов - это примерно - 9 м. Соединительная линия делается из коаксиального кабеля 75 Ом. По сообщению автора антенна имеет усиление 6 дБ по отношению к диполю. На 80 метрах имеет достаточно высокие углы излучения и хорошо работает на расстояниях 700… 800км. Начиная с 40 метрового диапазона, углы излучения в вертикальной плоскости уменьшаются. По горизонту антенна не имеет каких-либо приоритетов по направленности. Ее же автор предлагает использовать и для мобильно-стационарной работы в полевых условиях.

    3/4 Long Wire антенна

    Большая часть его дипольных антенн базируется на длине волны 3/4L каждой из сторон. Одна из них - «Inverted Vee» мы и рассмотрим.
    Физическая длина антенны больше ее резонансной частоты, увеличение длины до 3/4L расширяет полосу пропускания антенны по сравнению со стандартным диполем и понижает вертикальные углы излучения, делая антенну более дальнобойной. В случае горизонтального расположения в виде угловой антенны (полуромба), она приобретает весьма приличные направленные свойства. Все указанные свойства распространяются и на антенну, выполненную в виде «INV Vee». Входное сопротивление антенны понижается, и требуются специальные меры по согласованию с линией питания.При горизонтальном подвесе и общей длине 3/2L, антенна имеет четыре главных и два незначительных лепестка. Автор антенны (W3FQJ) приводит множество расчетов и диаграмм для разных длин плеч диполя и улов подвеса. По его словам он вывел две формулы, содержащие два «магических» числа, позволяющие определить длину плеча диполя (в футах) и длину фидера применительно к любительским диапазонам:

    L (каждой половины) = 738/F(в МГц) (в футах feet),
    L (фидера) = 650/F(в МГц) (в футах feet).

    Для частоты 14,2МГц,
    L (каждой половины) = 738/14,2 = 52 фута (feet),
    L (фидера) = 650/F = 45 футов 9 дюймов.
    (Перевод в метрическую систему проведите самостоятельно, автор антенны считает все в футах). 1 Фут =30,48 см

    Тогда для частоты 14,2МГц: L (каждой половины) = (738/14,2)* 0,3048 =15,84 метра,L (фидера) = (650/F14,2)* 0,3048 =13,92 метра

    P.S. Для других выбранных соотношений длин плеч коэффициенты изменяются.

    В "Радиоежегоднике" 1985 года была опубликована антенна немного странным названием. Она изображена обычным равнобедренным треугольником с периметром 41,4 м. и, очевидно, поэтому не привлекла к себе внимания. Как выяснилось позже, очень напрасно. Мне, как раз понадобилась простая многодиапазонная антенна, и я подвесил ее на небольшой высоте - около 7 метров. Длина питающего кабеля РК-75 около 56 м (полуволновой повторитель). Измеренные значения КСВ, практически совпали с приведенными в "Ежегоднике".Катушка L1 намотана на изоляционном каркасе диаметром 45 мм и содержит 6 витков провода ПЭВ-2 толщиной 2… 2 мм. ВЧ трансформатор Т1 намотан проводом МГШВ на ферритовом кольце 400НН 60х30х15 мм, содержит две обмотки по 12 витков. Размер ферритового кольца не критичен и выбирается, исходя из подводимой мощности. Кабель питания подключается только так, как показано на рисунке, если его включить наоборот - антенна работать не будет. Антенна не требует настройки, главное, точно выдержать ее геометрические размеры. При работе на диапазоне 80 м, по сравнению с другими простыми антеннами, она проигрывает на передачу - маловата длина. На прием разница практически не ощущается. Измерения, проведенные ВЧ-мостом Г.Брагина ("Р-Д" №11), показали, что мы имеем дело с нерезонансной антенной. Измеритель АЧХ показывает только резонанс кабеля питания. Можно предположить, что получилась достаточно универсальная антенна (из простых), имеет небольшие геометрические размеры и ее КСВ практически не зависит от высоты подвеса. Затем появилась возможность увеличить высоту подвеса до 13 метров над землей. И в этом случае величина КСВ по всем основным любительским диапазонам, кроме 80-метрового, не превышала 1,4. На восьмидесятке его значение составило от 3 до 3,5 на верхней частоте диапазона, поэтому для ее согласования дополнительно используется простейший антенный тьюнер. Позже удалось измерить КСВ на WARC диапазонах. Там значение КСВ не превысило 1,3. Чертеж антенны приводится на рисунке.

    В. Гладков, RW4HDK г.Чапаевск

    GROUND PLANE на 7 Mгц

    При работе на низкочастотных диапазонах вертикальная антенна имеет ряд преимуществ. Однако из-за больших размеров не везде можно ее установить. Уменьшение высоты антенны приводит к падению сопротивления излучения и росту потерьВ качестве искусственной "земли" использован экран из проволочной сетки и восемь радиальных проводов.Питается антенна 50-омным коаксиальным кабелем. КСВ антенны, настроенной с помощью последовательного конденсатора, был равен 1,4.По сравнению с ранее использовавшейся антенной типа "Inverted V" данная антенна обеспечивала выигрыш в громкости от 1 до 3 баллов при работе с DX.

    QST, 1969, N 1Радиолюбитель С. Гарднер (K6DY/W0ZWK) применил емкостную нагрузку на конце антенны типа "Ground Plane" на диапазоне 7 Мгц (см. рисунок), что позволило уменьшить ее высоту до 8 м. Нагрузка представляет собой цилиндр из проволочной сетки.

    P.S.Кроме QST, описание этой антенны было напечатано в журнале "Радио".В году 1980, будучи еще начинающим радиолюбителем изготавливал данный вариант GP. Ёмкостную нагрузку и искуственную землю делал из оцинкованной сетки, благо в те времена было этого в достатке. Действительно, антенна выиграла у Inv.V., на длинных трассах. Но поставив затем класическую 10_ти метровую GP, понял, что не стоило заморачиваться на изготовлении ёмкости на верху трубы, а лучше сделать длиннее её на два метра. Трудоёмкость изготовления не окупают конструкцию, не говорю уже о материалах на изготовление антенны.

    Антенна DJ4GA

    По виду она напоминает образующую дискоконусной антенны, а ее габаритные размеры не превышают габаритных размеров обычного полуволнового диполя.Сравнение этой антенны с полуволновым диполем, имеющим такую же высоту подвеса, показало, что она несколько уступает диполю при ближних связях SHORT-SKIP, но существенно эффективнее его при дальних связях и при связях, осуществляемых с помощью земной волны. Описываемая антенна имеет большую полосу пропускания по сравнению с диполем (примерно на 20%), которая в диапазоне 40 м достигает 550 кГц (по уровню КСВ до 2).При соответствующем изменении размеров антенна может быть применена и на других диапазонах. Введение в антенну четырех режекторных контуров, подобно тому, как это сделано в антенне типа W3DZZ, позволяет реализовать эффективную многодиапазонную антенну. Питание антенны осуществляется коаксиальным кабелем с волновым сопротивлением 50 Ом.

    P.S.Мною изготавливалась данная антенна. Все размеры были выдержаны, эдентичны рисунку. Установлена была на крыше пятиэтажного дома. При переходе с треугольника 80_ти метрового диапазона, расположенного горизонтально, на ближних трассах проигрышь составлял 2-3 балла. Проверялась при связях со станциями Дальнего востока (Аппаратура на прием Р-250). Выиграла у треугольника максимально полтара балла. При сравнении с класическим GP, проиграла полтора балла. Аппаратура использовалась самодельная, UW3DI усилитель 2хГУ50.

    Всеволновая любительская антенна

    Антенна французского радиолюбителя-коротковолновика описана в журнале "CQ". По утверждениям автора конструкции, антенна дает хороший результат при работе на всех коротковолновых любительских диапазонах - 10 м, 15 м, 20 м, 40 м и 80 м. Она не требует ни особо тщательного расчета (кроме расчета длины диполей), ни точной настройки. Устанавливать ее следует сразу так, чтобы максимум характеристики направленности был ориентирован в направлении преимущественных связей. Фидер такой антенны может быть либо двухпроводным, с волновым сопротивлением в 72 ом, либо коаксиальным, с тем же волновым сопротивлением. Для каждого диапазона, кроме диапазона 40 м, в антенне имеется отдельный полуволновый диполь. На 40-метровом диапазоне хорошо работает в такой антенне диполь диапазона 15 м.Все диполи настроены на средние частоты соответствующих любительских диапазонов и подсоединяются в центре ее параллельно к двум коротким медным проводам. К этим же проводам подпаивается снизу фидер. Для изоляции центральных проводов друг от друга используются три пластины из диэлектрического материала. На концах пластин делаются отверстия для крепления проводов диполей. Все места соединения проводов в антенне пропаиваются, а место подсоединения фидера обматывается лентой из пластиката, для предотвращения попадания в кабель влаги. Расчет длины L (в м) каждого диполя ведется по формуле L=152/fcp, где fср - средняя частота диапазона, Мгц. Диполи делаются из медной или биметаллической проволоки, оттяжки - проволочные или из канатика. Высота антенны - любая, но не менее 8,5 м.

    P.S. Также была установлена на крыше пятиэтажного дома, был исключён диполь на 80 метров (не позволили размеры и конфигурация крыши). Мачты использовал из сухой сосны, комель 10 см в диаметре, выссота 10 метров. Полотна антенн изготовлены были из сварочного кабеля. Кабель разрезался, бралась одна жила состоящая из семи менных проволок. Дополнительно немного подкручивал, для увеличения плотности. Показала себя как нормальные, отдельно подвешанные диполя. Для работы вполне приемлимый вариант.

    Переключаемые диполя с активным питанием

    Антенна с переключаемой диаграммой направленности относится к типу двухэлементных линейных антенн с активным питанием и предназначена для работы в диапазоне 7 МГц. Коэффициент усиления около 6 дБ, отношение "вперед-назад" 18 дБ, "вбок" - 22-25 дБ. Ширина ДН по уровню половинной мощности около 60 градДля 20 м диапазона L1=L2= 20,57 м: L3 = 8,56 м
    Биметалл или ант. канатик 1,6… 3 мм.
    I1 =I2= 14м кабель 75 Ом
    I3= 5,64м кабель 75 Ом
    I4 =7,08м кабель 50 Ом
    I5 = произвольная длина кабель 75 Ом
    К1.1 - ВЧ реле РЭВ-15

    Как видно из рис.1, два активных вибратора L1 и L2 расположены на расстоянии L3 (фазовый сдвиг 72 градуса) друг от друга. Элементы запитаны противофазно, суммарный фазовый сдвиг составляет 252 градуса. К1 обеспечивает переключение направления излучения на 180 градусов. I3 -фазосдвигающий шлейф I4- четвертьволновый согласующий отрезок. Настройка антенны заключается в подгонке размеров поочередно каждого элемента по минимуму КСВ при замкнутом накоротко через полуволновый повторитель 1-1(1.2) втором элементе. КСВ в середине диапазона не превышает 1,2, на краях диапазона -1.4. Размеры вибраторов приведены для высоты подвеса 20 м. С практической точки зрения, особенно при работе в соревнованиях, хорошо себя зарекомендовала система, состоящая из двух подобных антенн, расположенных перпендикулярно друг другу и разнесенных в пространстве. На крыше в этом случае размещается коммутатор, достигается мгновенное переключение ДН в одном из четырех направлений. Один из вариантов расположения антенн среди типовых городских застроек предложен на рис.2.Данная антенна применяется с 1981 г., неоднократно повторена на разных QTH, с ее помощью проведены десятки тысяч QSO с более чем 300 странами мира.

    С сайта UX2LL первоисточник "Радио №5 стр 25 С.Фирсов. UA3LDH

    Beam-антенна на 40 метров с переключаемой диаграммой направленности

    Антенна, схематично изображенная на рисунке, изготавливается из медного провода или биметалла диаметром 3...5 мм. Из такого же материала делают и линию согласования. В качестве коммутирующих реле применены реле от радиостанции РСБ. В согласователе используется конденсатор переменной емкости от обычного радиовещательного приемника, тщательно защищенный от попадания в него влаги. Провода управления реле приклеплены к капроновому шнуру-растяжке, проходящему по осевой линии антенныАнтенна имеет широкую диаграмму направленности (около 60°). Соотношение излучений вперед-назад - в пределах 23...25 дБ. Расчетный коэффициент усиления - 8 дБ. Антенна продолжительное время эксплуатировалась на станции UK5QBE.

    Владимир Латышенко (RB5QW) г. Запорожье, Украина

    P.S. Вне моей крыше, как выездной вариант, из интереса проводил эксперемент с антенной выполненной как Inv.V. Остальное почерпнул и выполнил как в данной конструкции. Реле применял автомобильные, четырех контактные, металлический корпус. Так как использовал для питания аккумулятор 6СТ132. Аппаратура TS-450S. Сто ватт. Действительно результат, как говорится на лицо! При переключении на восток начинали вызывать японские станции. VK и ZL, понаправлению были несколько южнее, пробивались с трудом через станции Японии. Про запад не буду описывать, все гремело! Антенна класная! Жаль не хватает места на крыше!

    Многодиапазонный диполь на WARC диапазоны

    Антенна сделана из медного провода диаметром 2 мм. Изоляционные распорки сделаны у меня из текстолита толщиной 4 мм (можно из деревянных планок) на которых с помощью болтов (Мб) закреплены изоляторы для наружной электропроводки. Питается антенна коаксиальным кабелем типа РК75 любой разумной длины. Нижние концы изоляторных планок нужно обязательно растянуть капроновым шнуром, тогда антенна вся хорошо растягивается и диполи между собой не перехлестываются. На этой антенне проведен целый ряд интересных DX-QSO со всеми континентами используя трансивер UA1FA с одной ГУ29 без РА.

    Антенна DX 2000

    Коротковолновики часто используют вертикальные антенны. Для установки таких антенн, как правило, требуется небольшое свободное пространство, поэтому для некоторых радиолюбителей особенно проживающих в густонаселённых городских микрорайонах) вертикальная антенна - единственная возможность выходить в эфир на коротких волнах.Одной из пока малоизвестных вертикальных антенн, работающих на всех КВ диапазонах, является антенна DX 2000. В благоприятных условиях антенну можно использовать для проведения DX - радиосвязей, но при работе с местными корреспондентами (на расстояниях до 300 км.) она уступает диполю. Как известно, вертикальная антенна, установленная над хорошо проводящей поверхностью, имеет почти идеальные "DX-свойства", т.е. очень низкий угол излучения. При этом не требуется высокая мачта.Многодиапазонные вертикальные антенны, как правило, конструируются с заградительными фильтрами (трапами) и работают они практически так же, как однодиапазонные четвертьволновые антенны. Применяющиеся в профессиональной КВ радиосвязи широкополосные вертикальные антенны не нашли большого отклика в КВ радиолюбительстве, но имеют интересные свойства. На рисунке изображены наиболее популярные у радиолюбителей вертикальные антенны -четвертьволновый излучатель, электрически удлинённый вертикальный излучатель и вертикальный излучатель с трапами. Пример т.н. экспоненциальной антенны приведён справа. Такая объёмная антенна имеет хорошую эффективность в полосе частот от 3,5 до 10 МГц и вполне удволетворительное согласование (КСВ<3) вплоть до верхней границы КВ диапазона (30 МГц). Очевидно, что КСВ = 2 - 3 для транзисторного передатчика очень нежелателен, но, учитывая широкое распространение в настоящее время антенных тюнеров (часто автоматических и встроенных в трансивер), с высоким КСВ в фидере антенны можно мириться. Для лампового усилителя , имеющего в выходном каскаде П - контур, как правило, КСВ = 2 - 3 не представляет проблемы. Вертикальная антенна DX 2000 является своеобразным гибридом узкополосной четвертьволновой антенны (Ground plane), настроенной в резонанс в некоторых любительских диапазонах, и широкополосной экспоненциальной антенны. Основа антенны-трубчатый излучатель длиной около 6 м. Он собран из алюминиевых труб диаметром 35 и 20 мм., вставленных друг в друга и образующих четвертьволовый излучатель на частоту примерно 7 МГц. Настройку антенны на частоту 3,6 МГц обеспечивает включённая последовательно катушка индуктивности 75 МкГн, к которой подсоединена тонкая алюминиевая трубка длиной 1,9 м. В согласующем устройстве используется катушка индуктивности 10 МкГн, к отводам которой подключается кабель. кроме того, к катушке подключены 4 боковых излучателя из медного провода в ПВХ-изоляции длиной 2480, 3500, 5000 и 5390 мм. Для крепления излучатели удлинены нейлоновыми шнурами, концы которых сходятся под катушкой 75 МкГн. При работе в диапазоне 80 м заземление или противовесы требуются обязательно, хотя бы для защиты от грозы. Для этого можно глубоко закопать в землю несколько оцинкованных полос. При монтаже антенны на крыше дома очень трудно найти какую-нибудь "землю" для КВ. Даже хорошо изготовленное заземление на крыше не имеет нулевого потенциала относительно "земли", поэтому для устройства заземления на бетонной крыше лучше использовать металлические
    конструкции, имеющие большую площадь поверхности. В применяемом согласующем устройстве заземление подключается к выводу катушки, в которой индуктивность до отвода, куда подключается оплётка кабеля, составляет 2,2 МкГн. Столь малая индуктивность недостаточна для подавления токов, протекающих по наружной стороне оплётки коаксиального кабеля, поэтому следует изготовить запорный дроссель, свернув около 5 м кабеля в катушку диаметром 30 см. Для эффективной работы любой четвертьволновой вертикальной антенны (в том числе, DX 2000) обязательно следует изготовить систему четвертьволновых противовесов. Антенна DX 2000 была изготовлена на радиостанции SP3PML (Войсковой клуб коротковолновиков и радиолюбителей PZK).

    Эскиз конструкции антенны приведён на рисунке. Излучатель был выполнениз прочных дюралевых труб диаметром 30 и 20 мм. Растяжки, служащие для крепления медных проводов-излучателей, должны быть устойчивы и к растяжению, и к погодным условиям. Диаметр медных проводов следует выбирать не более 3 мм (для ограничения собственного веса), и желательно использовать провода в изоляции, что обеспечит устойчивость к погодным условиям. Для фиксации антенны следует применять прочные изоляционные оттяжки, которые не растягиваются при изменении погодных условий. Распорки для медных проводов излучателейдолжны быть выполнены из диэлектрика (например, ПВХ-трубы диаметром 28 мм), но для повышения жёсткости их можно изготовить из деревянного бруска или другого, как можно более лёгкого материала. Вся конструкция антенны насаживается на стальную трубу не длиннее 1,5 м, предварительно жестко прикреплённую к основанию (крыше), например, стальными оттяжками. Антенный кабель может быть подключён через разъём, который, должен быть электрически изолирован от остальнойчасти конструкции. Для настройки антенны и согласования её импеданса с волновым сопротивлением коаксиального кабеля предназначены катушки индуктивностью 75 МкГн (узел А) и 10 МкГн (узел В). Антенну настраивают на требуемые участки КВ диапазонов подбором индуктивности катушек и положения отводов. Место установки антенны должно быть свободно от других конструций, лучше всего, на расстоянии 10-12 м, тогда влияние этих конструкций на электрические характеристики антенны невелико.


    Дополнение к статье:

    Если антенна установлена на крыше многоквартирного дома, высота её установки должна составлять более двух метров от крыши до противовесов (в целях безопасности). Подсоединение заземления антенны к общему заземлению жилого дома либо к каким либо арматуринам, составляющих кострукцию крыши категорически не рекомендую (во избежание огромных взаимных помех). Заземление применять лучше индивидуальное, расположенное в подвале дома. Протягивать его следует в коммуникационных нишах строения или отдельной трубе, пришпиленной к стене снизу доверху. Возможно применение грозоразрядника.

    В. Баженов UA4CGR

    Методика точного расчета длины кабеля

    Многие радиолюбители применяют 1/4 волновые и 1/2 волновые коаксиальные линии.Они необходимы в качестве трансформаторов сопротивлений повторителей импеданса, линий задержки фазы для антенн с активным питанием и др. Наиболее простой метод, но и наиболее неточный- метод умножения части длины волны на коэффициент 0.66, но он не всегда подходит, когда необходимо достаточно точновычислить длину кабеля, например 152.2 градуса. Такая точность бывает необходима для антенн с активным питанием, где от точности фазирования, зависит качество работы антенны. Коэффициент 0.66 берется средним, т.к. для одного и того же диэлектрика диэл. проницаемость может заметно отклоняться, а следовательно будет отклоняться и коэф.0.66.Хочу предложить метод, описанный ОN4UN. Он прост, но требует приборов (трансивер или генератор с цифровой шкалой, хороший КСВ-метр и эквивалент нагрузки 50 или 75 Ом в зависимости от Z. кабеля) рис.1. Из рисунка можно понять, как работает этот метод. Кабель, из которого планируется изготовить нужный отрезок, надо закоротить на конце. Далее обратимся к простой формуле. Допустим нам необходим отрезок в 73 градуса для работы на частоте 7.05Мгц. Тогда наш отрезок кабеля будет равен точно 90 градусам на частоте 7.05 х (90/73)=8.691МгцЭто означает, что перестраивая трансивер по частоте, на 8.691Мгц наш КСВ-метр должен указать минимум КСВ т.к. на этой частоте длина кабеля будет 90 градусов, а для частоты 7.05Мгц он будет ровно 73 градуса. Будучи закороченным, он проинвертирует кор. замыкание в бесконечное сопротивление и таким образом никак не будет влиять на показания КСВ-метра на частоте 8.691 Мгц.Для этих измерений необходим либо, достаточно чувствительный КСВ-метр, либо, достаточно мощный эквивалент нагрузки, т.к. придется увеличить мощность трансивера для уверенной работы КСВ-метра, если ему не будет достаточно мощности для нормальной работы. Этот метод дает очень высокую точность измерений, которая ограничена точностью КСВ-метра и точностью шкалы трансивера. Для измерений также можно воспользоваться антенным анализатором VА1, о котором я уже упоминал ранее. Разомкнутый кабель укажет на вычисленной частоте нулевой импеданс. Это очень удобно и быстро. Думаю, этот метод будет очень полезным для радиолюбителей.

    Александр Барский (VАЗТТТ), vаЗttt@yahoo.соm

    Ассиметричная антенна GP

    Антенна представляет собой (рис.1) не что иное как "грундплэйн" с удлиненным вертикальным излучателем высотой 6,7 м и четырьмя противовесами длиной 3,4 м каждый. В точке питания установлен широкополосный трансформатор сопротивлений (4:1). На первый взгляд, указанные размеры антен¬ны могут показаться неправильными. Тем не менее, сложив длину излучателя (6,7 м) и противовеса (3,4 м), убеждаемся, что общая длина антенны составляет 10,1 м. С учетом коэффициента укорочения, это Лямбда/2 для диапазона 14 МГц и 1Лямбда для 28 МГц. Трансформатор сопротивлений (рис.2) изготовлен по общепринятой методике на ферритовом кольце от ОС черно-белого телевизора и содержит 2x7 витков. Он установлен в точке, в которой входное сопротивление антенны составляет около 300 Ом (аналогичный принцип возбуждения используется в современных модификациях антенны Windom). Средний диаметр вертикала - 35 мм. Для достижения резонанса на требуемой частоте и более точного согласования с фидером можно в небольших пределах изменять размеры и положение противовесов. В авторском варианте антенна имеет резонанс на частотах около 14,1 и 28,4 МГц (КСВ=1,1 и 1,3 соответственно). При желании, увеличив указанные на рис.1 размеры примерно вдвое, можно добиться работы антенны в диапазоне 7 МГц. К сожалению, в этом случае "испортится" угол излучения в диапазоне 28 МГц. Впрочем, применив П-образное согласующее устройство, установленное около трансивера, можно использовать авторский вариант антенны для работы в диапазоне 7 МГц (правда, с проигрышем в 1,5...2 балла по отношению к полуволновому диполю), а также в диапазонах 18, 21, 24 и 27 МГц. За пять лет эксплуатации, антенна показала неплохие результаты, особенно в 10-метровом диапазоне.

    Укороченная антенна на 160 метров

    Укоротковолновиков нередко возникают трудности с установкой полноразмерных антенн для работы на низкочастотных KB диапазонах. Один из возможных вариантов исполнения укороченного (примерно в два раза) диполя диапазона 160 м приведен на рисунке. Общая длина каждой из половин излучателя - около 60 м. Они сложены втрое, как это схематически показано на рисунке (а) и удерживаются в таком положении двумя концевыми (в) и несколькими промежуточными (б) изоляторами. Эти изоляторы, а также подобный им центральный изготавливают из негигроскопичного диэлектрического материала толщиной примерно 5 мм. Расстояние между соседними проводниками полотна антенны - 250 мм.

    В качестве фидера используют коаксиальный кабель с волновым сопротивлением 50 Ом. На среднюю частоту любительского диапазона (или требуемого его участка - например телеграфного) антенну настраивают, перемещая две перемычки, соединяющие ее крайние проводники (на рисунке они изображены штриховыми линиями), и соблюдая симметрию диполя. Перемычки не должны иметь электрического контакта с центральным проводником антенны. С указанными на рисунке размерами резонансная частота 1835 кГц была достигнута при установке перемычек на расстоянии 1,8 м от концов полотна Коэффициент стоячей волны на резонансной частоте - 1,1. Данные о его зависимости от частоты (т. е. о полосе пропускания антенны) в статье отсутствуют.

    Антенна на 28 и 144 мгц

    Для эффективной работы в диапазоне 28 и 144 МГц необходимы вращающиеся направленные антенны. Однако применять на радиостанции две раздельные антенны такого типа обычно не представляется возможным. Поэтому автором были предпринята попытка совместить антенны обоих диапазонов, выполнив их в виде единой конструкции. Двухдиапазоная антенна представляет собой двойной "квадратат на 28 МГц, на несущей траверсе которого укреплен девитиэлементный волновой канал на 144МГц (рис. 1 и 2). Как показала практика, их взаимное влияние друг на друга незначительно. Влияние волнового канала компенсировано некоторым уменьшением периметров рамок "квадрата". "Квадрат” же, на мой взгляд, улучшает параметры волнового канала, увеличивая усиление и подавление обратного излучения.Питаются антенны с ломощю фидеров из 75-го омного коаксиального кабеля. Фидер "квадрата” включен в разрыв нижнего угла рамки вибратора (на рис. 1 слева). Небольшая асимметрия при таком включении вызывает лишь незначительный перекос диаграммы направленности в горизоинтальной плоскости и не сказывается на остальных параметрах. Фидер волнового канала включен через симметрирующее U-колено (рис-3). Как показали измерения КСВ в фидерах обеих антенн не превышает 1,1. Мачта антенны может быть выполнена из стальной или дюралевой трубы диаметром 35-50 мм. К мачте прикреплен редуктор, совмещенньй с реверсивным двигателем . К фланцу редуктора с ломощыо двух металлические накладок болтами М5 привинчена траверса "квадрата”, изготовленная из сосновой древесины. Сечение траверсы - 40Х40 мм. На ее концах укреплены крестовины, которое поддержвают восемь деревянных шестов "квадрата” диаметром 15-20 мм. Рамки выполнены из голого медного провода диаметром 2 мм (можно применить провод ПЭВ-2 1,5 - 2 мм). Периметр рамки рефлектора 1120 см, вибратора 1056 см. Волновой канал может быть выполнен из медных или латунных трубок или прутков. Его траверса укреплена на траверсе "квадрата” при помощи двух скоб. Настройки антенны не имеет особенностей. При точном повторении рекомедуемых размеров она может и не понадобится. Антенны на протяжении нескольких лет работы на радиостанции RA3XAQ показали хорошие результаты. На 144 МГц было проведено немало DX связей - с Брянском, Москвой, Рязанью, Смоленском, Липецком, Владимиром. На 28 МГц в общей сложности установлено более 3.5 тысяч QSO, среди них - с VP8, CX, LU, VK, KW6, ZD9 и др. Конструкция двухдиапазоннюй антенны была трижды повторена радиолюбителями Калуги (RA3XAC, RA3XAS, RA3XCA) и также получила положительные оценки.

    P.S. В восмидесятых годах пршлого столетия стояла точно такая антенна. В оснавном делал для работы через низко-орбитные спутники… RS-10, RS-13, RS-15. Использовал UW3DI c Жутяевским трансвертером, и на прием Р-250. Все получалось неплохо десятью ваттами. Квадраты на десятке работали хорошо, много VK, ZL, JA и т.д.… Да и проход был тогда замечательный!





    

    2024 © winplast.ru.